博客
关于我
hdu6201 transaction transaction transaction(新建源汇点,带负权最长路)
阅读量:250 次
发布时间:2019-03-01

本文共 799 字,大约阅读时间需要 2 分钟。

题意:

给定n个点的树,每个点有一个权值a(i),

要求找到两个不同的点S和T,满足a(T)-a(S)-dist(S,T)最大,dist(x,y)是点x和y的树上距离。
输出最大值。

数据范围:n<=1e5

解法:

题目给的是树,很容易往树形dp想,但是树形dp应该很难写,挺坑的.建立源点0,向n个点建立有向边,边权为-a[i],建立汇点n+1,n个点都向它有向边,边权为a[i],令原图的双向边边权取反变为负数,那么点0到点n+1的最短路就是式子的答案.

code:

#include
using namespace std;const int maxm=1e5+5;int head[maxm],nt[maxm<<2],to[maxm<<2],w[maxm<<2],tot;int mark[maxm];int d[maxm];int a[maxm];int n;void add(int x,int y,int z){ tot++;nt[tot]=head[x];head[x]=tot;to[tot]=y;w[tot]=z;}void spfa(int st){ queue
q; q.push(st); for(int i=1;i<=n+1;i++){ d[i]=-1e9; mark[i]=0; } d[st]=0; mark[st]=1; while(!q.empty()){ int x=q.front();q.pop(); mark[x]=0; for(int i=head[x];i!=-1;i=nt[i]){ int v=to[i]; if(d[v]

转载地址:http://wdkv.baihongyu.com/

你可能感兴趣的文章
M_Map工具箱简介及地理图形绘制
查看>>
m_Orchestrate learning system---二十二、html代码如何变的容易
查看>>
M×N 形状 numpy.ndarray 的滑动窗口
查看>>
m个苹果放入n个盘子问题
查看>>
n = 3 , while n , continue
查看>>
n 叉树后序遍历转换为链表问题的深入探讨
查看>>
N!
查看>>
N-Gram的基本原理
查看>>
n1 c语言程序,全国青少年软件编程等级考试C语言经典程序题10道七
查看>>
Nacos Client常用配置
查看>>
nacos config
查看>>
Nacos Config--服务配置
查看>>
Nacos Derby 远程命令执行漏洞(QVD-2024-26473)
查看>>
Nacos 与 Eureka、Zookeeper 和 Consul 等其他注册中心的区别
查看>>
Nacos 单机集群搭建及常用生产环境配置 | Spring Cloud 3
查看>>
Nacos 启动报错[db-load-error]load jdbc.properties error
查看>>
Nacos 报Statement cancelled due to timeout or client request
查看>>
Nacos 注册服务源码分析
查看>>
Nacos 融合 Spring Cloud,成为注册配置中心
查看>>
Nacos-注册中心
查看>>